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Abstract. Approximate formulae describing modulated photocurrents in a sandwich config-
uration of sample electrodes are derived. The carrier transport is described in terms of the multiple-
trapping model. The formulae refer to arbitrary spatial distribution of generated carriers. The case
of exponential light absorption in the sample is considered in detail. It is shown that for limiting
low and high modulation frequencies, both the amplitude and the phase shift of the photocurrent
are almost independent of the light absorption coefficient. In the intermediate-frequency range, for
the case of surface carrier generation, the phase shift of the photocurrent usually shows oscillations.
This makes it possible to obtain the energetic density of states from a simple formula. Examples
of calculated frequency dependencies of the photocurrent phase shift and amplitude are given for
exponential and Gaussian trap distributions as well as for a single trap level.

1. Introduction

The density of states (DOS) in the forbidden gap of a disordered solid has been studied
extensively for a number of years using various experimental methods. Among others,
techniques using a sinusoidally modulated photocurrent (MPC) have been developed. They
are based on light excitation of charge carriers in the sample and frequency-dependent
measurements of the response signal. The MPC method combined with modern measuring
techniques provides an important alternative to time-domain experiments, e.g. using the time-
of-flight (TOF) method, and affords possibilities for determining the DOS distribution in an
extended energy interval.

The MPC technique has been used in two types of experiment that differ in sample
electrode configuration. Most papers published so far concern coplanar electrode geometry.
The theoretical description of the method has been developed by Oheda [1] who also gave
a recursion procedure using the MPC phase shift for calculating the DOS distribution and
applied it to CdS crystals. Later on, alternative approaches for analysis of the experimental
data were suggested by Brüggemann et al [2] as well as Hattori et al [3]. The authors used
simple expressions containing both the phase shift and the modulus of the MPC for determining
the DOS energy profile and applied them to a-As2Se3 and a-Si:H. That the technique can be
used for investigating the localized-states distribution has been proved by means of numerous
experiments carried out on amorphous solids [4–8]. A comprehensive theoretical analysis of
the method, including the contribution of both electron and hole components to the MPC as
well as the influence of correlated defects in the energy gap, has been carried out by Longeaud
and Kleider [9, 10]. Hence, at present, one may regard the theory of the MPC in coplanar
electrode geometry as well mastered and complete.
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The MPC method has also been employed in experiments carried out on the sandwich
(TOF) electrode configuration. This extension has been proposed by Schumm and Bauer [11],
who adopted the modified analytical technique developed by Oheda and applied it to a-Si:H.
They have concluded that, in addition to the energetic profile, the spatial distribution of localized
states can also be determined. More recently, the sensitivity of this technique was examined
by Brüggemann et al [12] by means of numerical simulation for different light absorption
depths. Measurements of the MPC in a-Si:H in the sandwich sample configuration were also
carried out by Amato et al [13] and Cohen and Zhong [14]. It is worth noting that in the
former paper a distinct dependence of both the phase shift and the amplitude of the MPC on
the exciting light wavelength was established. More detailed theoretical description of the
experiment concerning the surface carrier generation has been published by Tomaszewicz [15]
and Hattori et al [7]. As noted in these papers, in both the low- and the high-frequency domain
the formulae for MPC are considerably simplified and enable us to calculate the DOS energetic
profile.

The present work is a continuation of investigations reported in the latter two papers. The
formulae describing MPCs have been derived for the case of an arbitrary spatial distribution
of carriers generated in the specimen. It has been demonstrated that for a large light
absorption coefficient the phase shift of the MPC usually shows oscillations in a certain
range of modulation frequencies. This behaviour also makes it possible to determine the
energetic profile of the DOS. Moreover, a detailed analysis of the frequency dependence of
the photocurrent has been carried out for several model trap distributions.

2. Formulation of the problem

The present paper concerns the usual experimental set-up for investigations of MPCs in a
sandwich-cell structure. The sample has the form of a thin layer, sandwiched between two
plane-parallel electrodes with a constant voltage applied to them. The carrier photogeneration
or photoinjection is accomplished by illuminating one semi-transparent electrode with a
modulated light beam. The carrier drift in the electric field takes place in the direction
perpendicular to the electrodes.

2.1. Simplifying assumptions

The carrier transport in the sample is described in terms of the usual multiple-trapping (MT)
model. In order to make the problem tractable analytically, some simplifying assumptions
have been introduced.

(i) The measured MPC is due to the transport of carriers of only one sign, e.g. electrons.
This assumption seems to be justified if, for example, the carriers are photogenerated in a
surface layer of the sample that is relatively thin, compared to the sample thickness. Then,
the contribution to the MPC of the hole transport in the carrier-generation region should
be negligible.

(ii) The applied field is so high that the carrier recombination in the illuminated sample layer as
well as the carrier diffusion can be ignored. The rough criterion for omitting the diffusion
effect has been given in [15].

(iii) The density of carriers thermally generated in the sample is very low, compared with
the photocarrier density (the case of an insulating solid). This means that the Maxwell
relaxation time, corresponding to dark conductivity of a solid, is much longer than the
characteristic times of the phenomena considered.
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(iv) The electrodes do not inject carriers into the sample, and quickly neutralize the carriers
of opposite sign arriving at them.

(v) The possible energy dependence of the carrier capture coefficient and frequency factor is
ignored.

The above assumptions are essentially the same as in the earlier papers on the subject [7,12,15].

2.2. Transport equations

The above-mentioned model of carrier transport corresponds to the following set of equations:

∂n(x, t)

∂t
= g(x, t)− µ0

∂

∂x
[n(x, t)E(x, t)] − Ct

{∫ ∞

0

[
Nt(ε)− n′

t (x, t, ε)
]

dε

}
n(x, t)

+
∫ ∞

0

n′
t (x, t, ε)

τr(ε)
dε (1)

∂n′
t (x, t, ε)

∂t
= Ct

[
Nt(ε)− n′

t (x, t, ε)
]
n(x, t)− n

′
t (x, t, ε)

τr(ε)
(2)

∂E(x, t)

∂x
= e

κκ0
[n(x, t) + nt (x, t)] (3)

where

nt (x, t) =
∫ ∞

0
n′
t (x, t, ε) dε. (4)

Here, x is the distance from the front electrode of the sample, t and ε denote, respectively,
the time and energy variables (energy ε is measured from the edge of the conduction band),
n(x, t) and nt (x, t) are the free- and trapped-carrier densities, n′

t (x, t, ε) is the density of
trapped carriers per unit of energy, g(x, t) is the carrier generation rate and E(x, t) denotes
the electric field strength. The meaning of the remaining notation is as follows: µ0 is
the microscopic carrier mobility, e the elementary charge, κ the dielectric constant, κ0 the
permittivity of free space, Ct the carrier capture coefficient, Nt(ε) the trap density per energy
unit and τr(ε) = ν−1

0 exp(ε/kT ) the mean carrier dwell time in the trap (ν0 is the frequency
factor, k the Boltzmann constant and T the sample temperature).

Equation (1) is the continuity equation. It states that the time variation of the free-carrier
density is due to the carrier generation, drift, capture and release from the traps (the sequential
terms on the RHS). Equation (2) describes the change of trapped-carrier density at a given
energy level ε, caused by the carrier capture and emission processes (the first and the second
term on the RHS). Equation (3) is Poisson’s equation, determining the relationship between the
electric field and the total carrier density. The hole density is here omitted, since it is assumed
to be negligible outside the illuminated sample layer. Integrating equation (2) with respect to
energy and adding it to equation (1) gives another form of the continuity equation:

µ0
∂

∂x
[n(x, t)E(x, t)] +

∂

∂t
[n(x, t) + nt (x, t)] = g(x, t). (5)

Since there is no carrier injection from the front electrode and the carrier diffusion is
neglected, the boundary condition for the above equations can be written as follows:

n(0, t) = 0. (6)

This implies that the total current at the illuminated electrode is the sum of the hole conduction
current and the displacement current. The electric field fulfils the condition∫ d

0
E(x, t) dx = V (7)



5212 P Grygiel and W Tomaszewicz

where V is the constant voltage applied to the sample.
The current intensity, I (t), induced in the measuring circuit equals the spatial average of

the conduction current in the specimen (see, e.g., [16]):

I (t) = eµ0S

d

∫ d

0
n(x, t)E(x, t) dx (8)

where S is the sample area and d is the sample thickness. Here, the hole component of the
conduction current is neglected.

2.3. Linearized transport equations

In the MPC experiment, generation of carriers is due to illumination varying sinusoidally with
time. Making the assumption that the free-carrier generation rate is proportional to the light
intensity, one can write

g(x, t) = g0(x) +�g(x) exp(iωt) (9)

where ω is the angular frequency of the light modulation. We will consider only the linear
response of the sample to the excitation which is expected to occur for shallow light modulation,
�g(x) � g0(x). The solutions of equations (2)–(5) should then also consist of the dc and
ac terms, the latter being proportional to exp(iωt). In what follows, these terms will be indicated
respectively by the subscript ‘0’ and the symbol ‘�’, e.g.

n(x, t) = n0(x) +�n(x) exp(iωt). (10)

Here, �n(x) is the complex function that determines both the phase shift and the amplitude
of the oscillating carrier density. According to the common convention, only real parts of the
expressions are of physical significance. In order to simplify the notation, in sections 2.3–3.4
and in the appendices we shall not indicate the dependence of the functions on ω.

Inserting these expressions into equations (5), (2) and (3) and retaining only the first-order
ac terms, we obtain

µ0
d

dx
[E0(x)�n(x) + n0(x)�E(x)] + iω [�n(x) +�nt(x)] = �g(x) (11)

�n′
t (x, ε) = Ct

[
Nt(ε)− n′

t0
(x, ε)

]
iω + Ctn0(x) + 1/τr(ε)

�n(x) (12)

and
d�E(x)

dx
= e

κκ0
[�n(x) +�nt(x)] . (13)

From conditions (6) and (7) one gets

n0(0) = 0 (14)

�n(0) = 0 (15)

and ∫ d

0
E0(x) dx = V (16)

∫ d

0
�E(x, t) dx = 0. (17)

Integrating equation (12) with respect to the energy, we get the equation

�nt(x) = �̃(x)�n(x) (18)
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where the function

�̃(x) = Ct
∫ ∞

0

[
Nt(ε)− n′

t0
(x, ε)

]
dε

iω + Ctn0(x) + 1/τr(ε)
. (19)

�̃(x) is the Fourier transform of the carrier release-time distribution function

�(x) = Ct
∫ ∞

0

[
Nt(ε)− n′

t0(x, ε)
]

exp{−[Ctn0(x) + 1/τr(ε)]t} dε (20)

(see [17]); that is,

�̃(x) =
∫ ∞

0
exp(−iωt)�(x) dt. (21)

As shown in appendix A, the function �̃(x) can be written in the simplified form

�̃(x) 	 Ct
∫ εf (x)

0

Nt(ε) dε

iω + 1/τr(ε)
(22)

where

εf (x) = kT ln[ν0/Ctn0(x)] (23)

is the quasi-Fermi level. According to equation (8), the expression describing the ac component
of the photocurrent has the form

�I = eµ0S

d

∫ d

0
[E0(x)�n(x) + n0(x)�E(x)] dx. (24)

In the next section, the above set of equations is approximately solved and the formulae for
the MPC in the measuring circuit are given.

3. Analytical results

3.1. General solution

Further on, we shall simplify the set of equations considered, neglecting the term n0(x)�E(x)

in equations (11) and (24). The more detailed calculations, given in appendix B, show that the
approximation is valid in the frequency range ω 
 1/τM (τM = κκ0/eµ0n0 is the Maxwell
relaxation time with n0 the average free-carrier density). Then, inserting (18) into (11) and
integrating the equation obtained, using the boundary condition (15), we obtain the formula

�n(x) = 1

µ0E0(x)

∫ x

0
�g(x ′) exp

[
− iω

µ0

∫ x

x ′

1 + �̃(x ′′)
E0(x ′′)

dx ′′
]

dx ′ (25)

and, from equation (24), the expression for the MPC:

�I = eS
d

∫ d

0

∫ x

0
�g(x ′) exp

[
− iω

µ0

∫ x

x ′

1 + �̃(x ′′)
E0(x ′′)

dx ′′
]

dx ′ dx. (26)

In order to calculate the MPC for a given trap distribution, the form of the functions n0(x),
n′
t0(x, ε) and E0(x) must be known. For this purpose one has to solve the corresponding

set of equations, which results from equations (2)–(5). The problem is similar to the case of
emission-limited or space-charge-limited currents (see, e.g., [18]) and in general can be treated
only numerically. Moreover, equation (26) is too complicated to be useful in the analysis of
experimental data. Therefore, in the following formulae we shall ignore the spatial dependence
of E0(x) and �̃(x), and assume that E0(x) 	 V/d . The approximation should be valid for
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relatively low generation rates of the carriers, when the space charge in the sample does not
significantly disturb the external field. After slight rearrangements of equations (25) and (26),
one then gets

�n(x) = d

µ0V

∫ x

0
�g(x − x ′) exp

[
− iωd

µ0V
(1 + �̃)x ′

]
dx ′ (27)

�I = eS

iωτ0(1 + �̃)

∫ d

0
�g(d − x)

{
1 − exp

[
− iωd

µ0V
(1 + �̃)x

]}
dx (28)

with τ0 = d2/µ0V—the free-carrier time of flight.
Next, we shall write the MPC as

�I = �Im exp(−iϕI ) (29)

where �Im and ϕI denote the MPC amplitude and phase shift, measured in the experiment.
These quantities can be calculated by comparison of equations (28) and (29). We shall also
adopt the following notation [15]:

ϕ = ωτ0[1 + Re �̃] = ωτ0
[

1 + Ct

∫ εf

0

Nt(ε)τr(ε)

1 + ω2τ 2
r (ε)

dε

]
(30)

γ = −ωτ0 Im �̃ = ω2τ0Ct

∫ εf

0

Nt(ε)τ
2
r (ε)

1 + ω2τ 2
r (ε)

dε. (31)

In the case of surface carrier generation,�g(x) ∝ δ(x) (with δ(· · ·) the Dirac delta function);
ϕ is the phase shift and γ is the ‘damping coefficient’ of the free-carrier-density wave, related
by the formula

�n(d) = �n(0+) exp(−iϕ − γ ) (32)

which results from (27). As far as an amorphous solid is concerned, the term ωτ0 in equation
(30) is negligibly small compared to the second one and can be omitted. Moreover, for a wide
distribution of localized states, varying slowly in the kT -energy range, equations (30) and (31)
can be approximated as follows [7, 15]:

ϕ 	 π
2
τ0kT CtNt(ε0) (33)

γ 	 τ0Ct
∫ εf

ε0

Nt(ε) dε (34)

for 0 < ε0 < εf . Here, ε0 denotes the demarcation level at which the release time of a trapped
carrier τr(ε0) = 1/ω [1]; that is,

ε0 = kT ln(ν0/ω). (35)

In the following subsections, the approximate formulae for the MPC are given for several
ranges of modulation frequency.

3.2. High-frequency domain

In the high-frequency range yielding strong damping of the carrier-density wave, γ > 1, the
exponential term in the integrand in equation (28), may be omitted. Therefore, the expression
for �I takes the simple form

�I 	 �I0

γ + iϕ
(36)
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where �I0 is the normalization factor for the current intensity:

�I0 = eS
∫ d

0
�g(x) dx. (37)

The amplitude and phase shift of the photocurrent are described by the formulae

�Im 	 �I0
[
ϕ2 + γ 2

]−1/2
(38)

tan ϕI 	 ϕ/γ. (39)

We note that equation (39), with ϕ and γ given by (33) and (34), has a form analogous to the
expression obtained by Oheda [1] in which the carrier-recombination term is neglected. Thus
the shape of the functionNt(ε) can be determined using the method developed by Brüggemann
et al [2] or Hattori et al [3]. It should be stressed that in this frequency range the carrier diffusion
may, however, play a significant role.

3.3. Low-frequency domain

For low modulation frequencies, when γ, ϕ � 1 (weak damping of the carrier-density wave)
and ϕ 	 γ , the exponential function in the integrand of equation (28) can be expanded into a
power series, which gives

�I 	 c1�I0(1 − ic2ϕ) (40)

with coefficients c1 and c2 defined by

c1 =
∫ d

0

(
1 − x

d

)
�g(x) dx

/ ∫ d

0
�g(x) dx (41)

c2 =
∫ d

0

(
1 − x

d

)2

�g(x) dx
/

2
∫ d

0

(
1 − x

d

)
�g(x) dx. (42)

In particular, in the case of surface carrier generation, c1 = 1 and c2 = 1/2. The expressions
for the amplitude �Im and phase shift ϕI of the photocurrent take the forms

�Im 	 c1�I0 (43)

and

ϕI 	 c2ϕ. (44)

Therefore, the shape of the functionNt(ε) can be directly determined using equations (44) and
(33). This is an extension of the formulae obtained in [7, 11, 15].

3.4. Intermediate-frequency domain

In the intermediate-frequency range, each of the functions ϕI and�Im has a complicated form
and depends, apart from the trap distribution, on the light absorption depth. For this reason,
only some features of MPCs can be then established.

We note first that the results obtained in two last subsections apply, respectively, for
γ > 1 and γ � 1. Therefore, the limiting frequency ωe between the low- and high-frequency
regimes is determined implicitly by the condition γ 	 1. In the case of a trap distribution
slowly varying with energy, from equations (34) and (35) we get the formula

τ0Ct

∫ εf

ε0e

Nt (ε) dε 	 1 (45)
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where

ε0e = kT ln(ν0/ωe). (46)

For the surface carrier-generation case the analogous formulae were obtained first in [7]. The
formulae make it possible to determine the form of the integrated DOS function in the interval
ε0e � ε � εf from the measured dependence of ωe on the voltage V , applied to the sample,
and/or on the sample thickness d . However, the frequency ωe corresponds to the crossover
point of the extrapolated curves, representing the function ϕI or�Im for ω � ωe and ω > ωe,
and cannot be determined exactly.

Another feature of MPCs in the intermediate range of frequency is the oscillatory behaviour
of the phase shift ϕI and the corresponding anomalies of the amplitude �Im. We shall
demonstrate this for the case of surface carrier generation, �g(x) ∝ δ(x). Then, the final
expressions for the phase shift and amplitude of MPC, obtained from equations (28) and (29),
are

�Im = �I0
{[

1 − exp(−γ ) cosϕ
]2

+
[
exp(−γ ) sin ϕ

]2

ϕ2 + γ 2

}1/2

(47)

and

tan ϕI = ϕ
[
1 − exp(−γ ) cosϕ

] − γ exp(−γ ) sin ϕ

γ
[
1 − exp(−γ ) cosϕ

]
+ ϕ exp(−γ ) sin ϕ

. (48)

For weakly dispersive carrier transport, when the ratio ϕ/γ � 1, the maxima of ϕI occur for
the values of ϕn given approximately by sin ϕn 	 −1; that is,

ϕn 	 (4n− 1)π

2
n = 1, 2, 3, . . .. (49)

Since γ increases with frequency ω (cf. equations (34) and (35)), for increasing frequency
the oscillations are more and more strongly damped. At first sight, one can also expect the
existence of local maxima of the MPC amplitude�Im at the same values of ϕn. For dispersive
carrier transport, however, only some anomalies in the course of�Im can be recognized (cf. the
next section). Making use of equation (33), one gets the formula

Nt(ε0n) 	 4n− 1

CtkT τ0
n = 1, 2, 3, . . . (50)

where

ε0n = kT ln(ν0/ωn) (51)

and theωn denote the positions of ϕI -maxima. The above expressions enable us to calculate the
DOS profile from the dependence of ωn on the applied voltage V and/or the sample thickness
d, measured in the experiment. The above-proposed treatment is analogous to the method of
the DOS calculation in the TOF measurements from the dependence of the effective carrier
transit time on V and/or d [19].

The oscillations of ϕI should also occur for the case of non-dispersive carrier transport,
e.g. due to a single trapping level of depth εm, provided that the condition ϕ/γ � 1 is fulfilled.
Since for a discrete trap level the ratio ϕ/γ = 1/ωτr(εm), as follows from (30) and (31), the
oscillations can appear only in the frequency interval ω � 1/τr(εm). The formulae (50) and
(51) are then not valid, since they refer to a continuous trap density.

In the present calculations the effect of carrier diffusion is disregarded. One can expect
the carrier diffusion to cause some ‘smearing out’ of the ϕI -peaks, but those corresponding to
the lowest values of n can still be distinguished.
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4. MPCs for model trap distributions

In order to investigate the detailed behaviour of the MPCs, we have performed calculations of
the functions ϕI (ω) and �Im(ω) for three model trap distributions: the exponential one

Nt(ε) = Ntot
kTc

exp

(
− ε

kTc

)
(52)

and the εm-peaked Gaussian distribution

Nt(ε) = Ntot√
πkTc

exp

[
−

(
ε − εm
kTc

)2
]

(53)

and also a single discrete trap level:

Nt(ε) = Ntot δ(ε − εm) (54)

(where Ntot is the total trap density and Tc the characteristic temperature). The free-carrier
generation rate was assumed to vary exponentially with the distance x from the front contact
of the sample. Thus,

�g(x) = �g(0) exp(−α0x) (55)

where α0 is the light absorption coefficient.
In the figures below, the courses of the MPC phase shift, ϕI (ω), and amplitude, �Im(ω),

computed using equations (28) and (29), are presented. In the cases of exponential and Gaussian
trap distributions, the function �̃(ω)was calculated numerically from the exact equation (A.3).
The plots correspond to the idealized case of extremely small trap filling, due to the constant
component of the exciting light—that is, to the limiting transition εf → ∞. We intend
to consider in detail the influence of trap saturation on the MPCs in a future paper. Each
figure shows results for three different light absorption depths, determined by the values of
α0d. Solid lines indicate the curves corresponding to surface carrier generation; the dotted and
dashed ones mark the curves for intermediate and low values of the light absorption coefficient,
respectively. Additionally, the courses of the functions ϕ(ω), γ (ω), as well as of Re�n(x)
for the case of surface carrier generation, are presented in separate figures.

Figure 1 presents the frequency dependencies of the phase angle ϕ(ω) (a) and ‘damping
coefficient’ γ (ω) (b) of the free-carrier-density wave, calculated for the exponential trap
distribution (52). For comparison, the curves computed from exact equations (30) and (31)
(solid lines) as well as from the approximate ones (33) and (34) (dashed lines) are given.
The figure shows that both the exact and approximate functions ϕ(ω) and γ (ω) increase
with frequency as ωα (where α = T/Tc is the dispersion parameter). However, there exist
meaningful differences between the values of the corresponding multiplicative coefficients,
particularly for the function ϕ(ω). The additional calculations show that the above-mentioned
discrepancies gradually diminish with decreasing value of α. It should be recalled that
analogous approximations are used in the theory of MPCs, measured in coplanar-electrode
configurations (see, e.g., [2, 3]).

Figure 2 displays the phase shift (a) and the amplitude (b) of the MPC versus modulation
frequency, calculated for the exponential trap distribution. All of the features of the MPCs
discussed in the previous section can be recognized from the plots. As can be seen, for limiting
cases of low and high modulation frequencies both the phase shift and the amplitude of the
MPC are almost independent of the light absorption coefficient, except for the multiplicative
factors. In the initial frequency domain the phase shift increases as ωα , whereas in the high-
frequency region the amplitude decays like ω−α , in accordance with equations (44) and (38).
In the intermediate-frequency domain the MPC phase shift shows oscillations being more and
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Figure 1. The phase angle (a) and ‘damping coefficient’ (b) of the free-carrier-density wave
for exponential trap distribution. Solid lines correspond to exact equations (30) and (31); the
dashed ones relate to approximate equations (33) and (34). The calculations were carried out for
T/Tc = 0.8, τ0ν0 = 10−5 and CtNtot /ν0 = 1013.

Figure 2. The MPC phase shift (a) and amplitude (b) for exponential trap distribution and three
different light absorption depths. The arrows mark the positions of maxima of ϕI (ω), calculated
from (50) and (51). The parameters are as for figure 1.

more strongly damped with the increase ofω, and the MPC amplitude exhibits some anomalous
behaviour in the same frequency range. For increasing light absorption depth, the oscillations
of ϕI (ω) gradually disappear and their maxima shift towards higher frequencies. The results
given refer to relatively high values of the dispersion parameter α = 0.8—that is, to the case
of weakly dispersive transport. With decreasing α, the oscillations of ϕI (ω) become less and
less distinct.

Figure 3 presents the spatial distributions of free carriers for the case of exponential
distribution of traps and surface-absorbed light, computed from equation (27). The calculation
parameters were the same as in figures 1 and 2. The normalization factor for the carrier density
equals �n0 = �I0 d/eSµ0V , where �I0 is given by equation (37). The plots (a), (b) and
(c) relate in turn to the values of ω corresponding to the maxima of the MPC phase shift
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Figure 3. Spatial distributions of free carriers (real parts of oscillating terms), corresponding to
figure 2 with α0d = 100. The plots (a), (b) and (c) are obtained for frequencies corresponding to
the maxima of ϕI (ω) in figure 2(a).

from figure 2(a). One can recognize that the phase angle ϕ of the oscillating carrier density
�n(d) is equal, respectively, with a good accuracy, to ϕ1 = 3π/2 (a), ϕ2 = 7π/2 (b) and
ϕ3 = 11π/2 (c), in accordance with the formula (49). The figure illustrates also the stronger
and stronger damping of the free-carrier-density wave with the increase of frequency.

Figure 4 shows the functions ϕ(ω) and γ (ω), calculated from the exact and approximate
formulae for the Gaussian trap distribution (53). The calculation parameters are chosen in
such a manner that the inequality ε0(ω) > εm holds throughout the entire frequency range. In
this case, the differences between the exact and approximate values become less significant
with increasing frequency for both functions. The approximation of the function γ (ω) is again
better than that of the function ϕ(ω).

Figure 4. The phase angle (a) and ‘damping coefficient’ (b) of the free-carrier-density wave
for Gaussian trap distribution. Solid and dashed lines denote respectively exact and approximate
results. The parameters are: εm/kT = 16, T/Tc = 0.25, τ0ν0 = 2×10−11 andCtNtot /ν0 = 1013.

Figure 5 shows the phase shift (a) and the amplitude (b) of the MPC, obtained for a Gaussian
trap distribution. The carrier transport is here more dispersive than in the case corresponding
to figure 2. For this reason, the oscillations of the phase shift of the MPC almost disappear.
One can distinguish only a single wide maximum of ϕI (ω).
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Figure 5. The MPC phase shift (a) and amplitude (b) for Gaussian trap distribution and different
values of the light absorption coefficient. The arrow indicates the position of the calculated
maximum of ϕI (ω). The parameters are as for figure 4.

Figure 6 presents the frequency dependence of the MPC phase shift and amplitude for the
case of a single discrete trap level (54). The asymptotic behaviour of the phase shift is given
by the formulae ϕI (ω) ∝ ω for ω � ωe, 1/τr(εm) and ϕI (ω) ∝ ω−1 for ω 
 ωe, 1/τr(εm),
according to (30), (31), (39) and (44). In the intermediate range of frequencies the course of
the curves is similar to that from figure 2, with the exception of clearly visible oscillations
of �Im(ω). One has to stress that the value of the MPC phase shift exceeds π/2 in a certain
frequency interval and thus the proper root of the equation

tan ϕI = −Im�I/Re�I

must be chosen (cf. equations (28) and (29)). We have assumed that the function ϕI (ω) is a
continuous one and that limω→0 ϕI (ω) = 0.

Figure 6. The MPC phase shift (a) and amplitude (b) for a discrete trap level and several light
absorption depths. The arrows indicate the computed frequencies, corresponding to the maxima
of ϕI (ω). The values of the parameters are: εm/kT = 16, τ0ν0 = 10−11 and CtNtot /ν0 = 1013.
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Figure 7 shows the spatial distributions of free carriers for the case of a discrete trap level
in an analogous manner to figure 3. One can notice that the individual values of the phase
angle ϕ do not fulfil exactly equation (49), particularly in plot (a). This is because the functions
ϕ(ω) and γ (ω) strongly vary in the corresponding frequency region. One also observes the
damping of the free-carrier wave, which is more significant for higher frequencies.

Figure 7. Spatial distributions of free carriers for a discrete trap level, corresponding to figure
6 with α0d = 100. The plots (a), (b) and (c) are obtained for frequencies corresponding to the
maxima of ϕI (ω) in figure 6(a).

5. Conclusions

On the basis of the results obtained, the following conclusions can be drawn. The forms of the
MPC phase shift and amplitude in the low- and high-frequency domains are almost independent
of the light absorption coefficient. In these frequency ranges, both the phase shift and the
amplitude of the photocurrent can be described using the derived approximate formulae, and
the energetic DOS can be calculated making use of the methods known from previous papers.
In the intermediate-frequency range, for weakly dispersive carrier transport and surface light
absorption, the MPC phase shift exhibits damped oscillations. The oscillations gradually
disappear with increasing light absorption depth. The essential point is that the presence of
the phase-shift oscillations enables us also to determine the form of the DOS. This can be
done on the basis of formulae (50) and (51) for experimental data corresponding to different
applied voltages and/or to different sample thicknesses. It is worth stressing that all the results
obtained here and in the earlier papers on the subject [7, 11, 15] apply solely in the frequency
range ω 
 1/τM (cf. section 3.1). The given condition may not be fulfilled in the case of MPC
measurements on highly photoconductive samples.

Appendix A. Quasi-Fermi-level approximation

From equation (2) we obtain the following formula relating the dc components of trapped- and
free-carrier densities:

n′
t0(x, ε) = Nt(ε)

1 + 1/Ctn0(x)τr(ε)
. (A.1)

Therefore, the energetic density of empty traps

Nt(ε)− n′
t0(x, ε) = Nt(ε)

1 + Ctn0(x)τr(ε)
(A.2)
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and formula (19) for �̃(x) can be rewritten as

�̃(x) = Ct
∫ ∞

0

Nt(ε) dε

[1 + Ctn0(x)τr(ε)] [iω + Ctn0(x) + 1/τr(ε)]
. (A.3)

It is seen that the trapped-carrier distribution and, in consequence, the form of the
function �̃(x) are characterized mainly by the position of the quasi-Fermi level, εf (x), given
implicitly by

τr
[
εf (x)

] = 1/Ctn0(x). (A.4)

In the case of a slowly varying trap density, the trapped-carrier distribution is approximately
described by

n′
t0(x, ε) 	 Nt(ε)H

[
ε − εf (x)

]
where H [· · ·] is the unit step function. If the demarcation energy ε0 < εf (x) (cf. (35)), the
dominant contribution to the integral (A.3) originates from the interval 0 � ε � εf (x), where
the terms involving Ctn0(x) may be omitted. In this way, from (A.3) and (A.4) one obtains
equations (22) and (23) given in the text.

Appendix B. Solution of the linearized transport equations

Making use of Poisson’s equation (13) and integrating equation (11) over x subject to the
conditions (14) and (15), we get the formula

µ0 [E0(x)�n(x) + n0(x)�E(x)] +
iωκκ0

e
[�E(x)−�E(0)] =

∫ x

0
�g(x ′) dx ′. (B.1)

From equations (13) and (18) there follows the relationship

�n(x) = κκ0

e[1 + �̃(x)]

d�E(x)

dx
. (B.2)

Inserting (B.2) into (B.1) one obtains the differential equation for �E(x):

µ0E0(x)

1 + �̃(x)

d�E(x)

dx
+

[
iω +

1

τM(x)

]
�E(x) = e

κκ0
�g(x) + iω�E(0) (B.3)

where

τM(x) = κκ0

eµ0n0(x)
(B.4)

is the Maxwell relaxation time referring to the carrier density n0(x). The solution of equation
(B.3) has an involved form but simplifies considerably when the term �E(x)/τM(x) can be
neglected. The corresponding criterion is

ωτM(x)
 |Im �̃(x)|
1 + Re �̃(x)

,
1 + Re �̃(x)

|Im �̃(x)| 0 � x � d. (B.5)

Usually Re �̃
 1, as noted in section 3.1. Moreover, in the case of dispersive transport, Re �̃
and Im �̃ are of the same order. Then, from (B.5) there results the condition ω 
 1/τM(x),
0 � x � d .

In the approximation considered, the solution of equation (B.3) has the form

�E(x) = e

iωκκ0

∫ x

0
�g(x ′)

{
1 − exp

[
− iω

µ0

∫ x

x ′

1 + �̃(x ′′)
E0(x ′′)

dx ′′
]}

dx ′ +�E(0). (B.6)
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Making use of equation (B.2), one then obtains expression (25) for�n(x). In order to calculate
the MPC it is convenient to rewrite the formula (24), using equation (B.1), as

�I = eS
d

∫ d

0

{∫ x

0
�g(x ′) dx ′ − iωκκ0

e
[�E(x)−�E(0)]

}
dx. (B.7)

Then, inserting expression (B.6), one gets the formula (26).
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